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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a few
curative options. Desmoplastic stroma and immune system evasion in PDAC represent challenges to
the success of therapeutic strategies are used to suitably treat other tumor types. Characterizing the
PDAC microenvironment (including the immune environment) remains critical to developing safe
and efficient therapies. Here, we present a comprehensive meta-analysis identifying 1153 significantly
dysregulated genes, which mainly impact extracellular matrix remodeling and the immune system.
We identify two signatures of twenty-eight immune-related genes and eleven stroma-related genes
influencing PDAC patients’ survival. Additionally, five immune genes are associated with PDAC
prognosis for the first time.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) prognoses and treatment responses remain
devastatingly poor due partly to the highly heterogeneous, aggressive, and immunosuppressive
nature of this tumor type. The intricate relationship between the stroma, inflammation, and immunity
remains vaguely understood in the PDAC microenvironment. Here, we performed a meta-analysis
of stroma-, and immune-related gene expression in the PDAC microenvironment to improve disease
prognosis and therapeutic development. We selected 21 PDAC studies from the Gene Expression
Omnibus and ArrayExpress databases, including 922 samples (320 controls and 602 cases). Differential
gene enrichment analysis identified 1153 significant dysregulated genes in PDAC patients that
contribute to a desmoplastic stroma and an immunosuppressive environment (the hallmarks of PDAC
tumors). The results highlighted two gene signatures related to the immune and stromal environments
that cluster PDAC patients into high- and low-risk groups, impacting patients’ stratification and
therapeutic decision making. Moreover, HCP5, SLFN13, IRF9, IFIT2, and IFI35 immune genes are
related to the prognosis of PDAC patients for the first time.

Keywords: pancreatic ductal adenocarcinoma; desmoplasia; immune system; heterogeneity cancer;
biomarkers; molecular profile; meta-analysis; transcriptomics; prognosis; meta-analysis

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic
cancer, representing over 80% of all diagnosed pancreatic neoplasms. This highly lethal
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cancer has a poor prognosis, with a median survival rate of fewer than six months, although
its five-year survival rate increased to 12% in recent years [1]. While it is currently the third
leading cause of cancer-related deaths worldwide [1], the yearly increase in its incidence
may make PDAC the second leading cause of cancer-related deaths by 2030 [1]. The absence
of reliable biomarkers for effective screening and early diagnosis at the pre-symptomatic
stages when treatments function most effectively represents a primary reason why most
PDAC cases remain incurable. Currently, most patients present locally advanced (30–35%)
or metastatic (50–55%) PDAC at diagnosis [2].

In advanced-stage PDAC patients, curative surgery remains impossible, and sys-
temic therapeutic options (including immunotherapy) remain limited and ineffective [3].
Among the solid tumors, PDAC represents an immunologically “cold” tumor character-
ized by sparse T cell infiltration [4,5]; in contrast, immunologically “hot” tumors (such as
melanoma) suffer from a high neoantigen load and immune cell infiltration [6]. PDAC
tumors possess distinctive features such as an extracellular matrix (ECM) composition and
a fibrotic stroma, which make it highly desmoplastic and significantly influence immune
responses [7]. PDAC cells strongly interact with the surrounding microenvironment, which
includes components such as immune cells, cytokines, metabolites, fibroblasts, and hyaluro-
nan. These interactions create a highly fibrotic and active organized stroma (desmoplastic
stroma) and an immunosuppressive environment that makes PDAC invasive and highly
resistant to immunotherapy [5,8]; therefore, the characterization of the stroma and tumor
immune microenvironment in PDAC patients represents a critical step in developing more
effective therapeutic strategies. In the last few years, several investigations have focused
on studying gene expression in PDAC to better understand the molecular composition of
this devastating cancer and identify different molecular subtypes of pancreatic cancer that
improve the stratification of patients for clinical strategies [9,10]. Bailey and colleagues
defined four molecular subtypes of pancreatic cancer: squamous, pancreatic progenitor,
immunogenic and aberrantly differentiated endocrine exocrine (ADEX) [10], while Moffitt’s
group identified two stromal subtypes that were defined as “normal” and “activated” [9].
Nevertheless, in clinical practice, it is difficult to perform this broad molecular test on each
patient. Therefore, and despite these new insights in pancreatic cancer, the diagnostic and
prognostic outcomes of PDAC patients are extremely poor compared to those of other types
of cancers. Additionally, new studies need to be conducted to understand the extreme
complexity of PDAC and find simpler genetic signatures that can be incorporated into
clinical practice and improve the clinical setting for PDAC patients and families.

We aimed to understand the stroma and tumor immune microenvironments of PDAC
patients by retrieving and analyzing transcriptomic data from 21 different studies (repre-
senting a population of 922 samples; 320 controls and 602 cases) from the Gene Expression
Omnibus (GEO)-NCBI and ArrayExpress data repositories. Through meta-analysis, we
identified a series of gene signatures with survival prognostic value that may play a sig-
nificant role in therapeutic decision making for PDAC patients, including five genes not
previously related to PDAC survival. We also provide a friendly user web tool with detailed
and interactive visualization of our comprehensive meta-analysis results.

2. Materials and Methods

For all bioinformatics and statistical analyses, we employed R software v. 4.1.3 [11]
(Supplementary Table S1 details the R packages and versions).

2.1. Study Search and Selection

Publicly available datasets were collected from GEO-NCBI [12] and ArrayExpress
databases [13]. Data available in the Cancer Genome Atlas (TCGA) [14] were excluded
from the original search with the purpose of using this dataset as an external cohort for
survival analysis. Following the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [15], a systematic search of published studies was
conducted in 2021 (period: 2002–2021). The protocol has not been registered. Three
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researchers in the study conducted the literature search (C.P.C., L.F., and I.P.D.), and the
consistency of the review and selection procedures used was evaluated and confirmed.
A broad search was performed using the MeSH (Medical Subject Headings) thesaurus
keyword “pancreatic cancer”, after which stringent filters were applied. The final inclusion
criteria were:

• Normal and PDAC samples available.
• RNA extracted directly from human pancreas biopsies.
• Patients had not undergone treatment before biopsy.
• Sample size > 4 for PDAC and control groups.

Finally, normalized gene expression from twenty-seven microarray studies (GSE86436,
GSE71989, GSE62452, GSE62165, GSE60979, GSE56560, GSE55643, GSE46234, GSE43795,
GSE43288, GSE41368, GSE32676, GSE28735, GSE27890, GSE22780, GSE19650, GSE18670,
GSE16515, GSE15471, GSE1542, GSE11838, GSE102238, GSE101448, E-MTAB-3365, E-MTAB-
1791, E-MEXP-950, and E-EMBL-6) and the count matrices of two RNA-sequencing (RNA-
seq) (GSE119794 and GSE136569) datasets were retrieved for further analysis.

2.2. Individual Preprocessing and Analysis

Datasets were individually analyzed in two steps: preprocessing and differential
expression analysis.

The nomenclature of clinical variables included in each study was standardized for
data preprocessing, and then, exploratory analysis was performed. Prior to exploratory
analysis, RNA-seq raw count matrices were normalized using the trimmed mean of m val-
ues from the edgeR package [16,17]. The normalization method performed by the original
authors for each microarray dataset was assessed, and the matrices were log2 transformed
when necessary. Exploratory analysis included expression boxplots, unsupervised clus-
tering, and principal component analysis (PCA) to detect patterns of expression between
samples and genes and the presence of batch effects in each study.

Differential gene expression analyses were performed in R using limma (v. 3.48.3) [18],
and a paired sample design was implemented in those datasets where applicable. Differ-
entially expressed genes were identified using p values with Benjamini-Hochberg correc-
tion [19] for a false discovery rate (FDR) at a significance level of 0.05.

2.3. Gene Expression Meta-Analysis

Gene expression analysis results were integrated into a meta-analysis using the DerSi-
monian & Laird random effects model [20], considering individual study heterogeneity.
This model considers the variability in individual studies by increasing the weights of
studies with less variability when meta-analysis results are computed.

A total of 24,365 genes were evaluated. p values, FDR-corrected p values, the logarithm
of Fold Change (log2FC), and 95% confidence intervals of log2FC were calculated for each
evaluated gene, and both funnel and forest plots were computed for each gene. These
representations were assessed for possible biased results, where log2FC represents the
effect size of a function, and the standard error of the log2FC serves as a study precision
measure [21]. Genes were considered significant when FDR < 0.05, absolute log2FC > 0.6,
and were measured in at least eleven studies. Sensitivity analysis (leave-one-out cross-
validation [22]) was conducted for each significant gene to verify alterations in the results,
owing to the inclusion of any study.

Statistically significant results from the gene expression meta-analysis were func-
tionally enriched by over-representation analysis (ORA) using clusterProfiler [23,24] and
ReactomePA [25]. Gene Ontology (GO) terms [26,27] and Reactome pathway [28] en-
richment were performed following this approach. Only those functions and pathways
with more than ten differentially expressed genes found in the gene set were considered.
Functional enrichment was explored and visualized with the rrvgo package [29].
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2.4. Web Tool

To make the data and results of our research widely accessible, a web tool was de-
veloped using the shiny package in R. The tool was developed in a user-friendly manner,
allowing users to navigate and interact with the data. Users can then select different
variables and parameters to visualize the data in numerous ways. The tool also includes
interactive plots and tables to display the analysis results. The web tool is hosted on a secure
server and is regularly maintained to ensure stability and performance. The source code
for the tool is also publicly available and can be accessed through our GitHub repository:
https://github.com/ipediez/ShinyReport (accessed on 1 May 2023).

2.5. Survival Analysis

RNA-seq expression data and metadata from patients in the Pancreatic adenocarci-
noma (PAAD) TCGA cohort were downloaded from cBioPortal [30]. Z-scores of RNA-seq
expression were used for survival analysis. For each analyzed gene, samples were divided
into two groups based on their expression levels. Samples with expression Z-scores below
the lower quartile were classified as having low levels of expression, whereas samples
exceeding the upper quartile were classified as having high levels of expression. Forty-five
samples with high levels of expression and forty-five samples with low levels of expression
were included for survival analysis. Gene-wise Kaplan–Meier survival analysis compared
the low-level and high-level expression groups. This method estimates the probability of
survival over time based on the expression levels of the gene of interest. The log-rank test
was used to compare the survival curves between distinct groups of samples.

For risk-score-based survival, genes were tagged as highly expressed for a given
sample when the expression levels were above the upper quartile. Then, samples were
clustered into “high-risk” and “low-risk” groups based on the number of highly expressed
genes. The cutoff was set as the median of the highly expressed genes in each sample.
Furthermore, a proportional hazard model using Cox regression was implemented to study
the impact of clinicopathological variables on survival and evaluate the contribution of the
risk score in a multivariate model.

3. Results

We performed a systematic review and differential gene expression analysis of PDAC
transcriptomic studies from the GEO-NCBI [12] and ArrayExpress [13] databases to explore
the stroma and immune environments in PDAC patients. We then integrated the results of
each differential gene expression analysis into a meta-analysis. The biological context of the
meta-analysis results was explored via functional enrichment using an ORA of GO terms
and pathways (Figure 1). Finally, we conducted survival analysis to explore the impact of
specific candidate genes on patients’ outcomes.

3.1. Systematic Review

The systematic review identified 143 non-duplicated studies. Then, we excluded
studies with samples from patients under cancer treatment and studies where the sample
size was less than four in the PDAC or the control group, resulting in a subset of twenty-
nine studies (Figure 2). We discarded eight studies after exploratory analysis, giving a final
set of twenty-one homogeneous and comparable studies for further analysis. The selected
studies included 922 samples (320 controls and 602 cases). Although most studies did
not include relevant sample metadata, we assessed the clinical characteristics when they
were available. Supplementary Tables S2 and S3 contain further information regarding the
selected studies and clinicopathological characteristics of the study population.

https://github.com/ipediez/ShinyReport
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3.2. Integration of Differential Expression Profiles

Exploratory analysis found abnormal normalization or a lack of annotation in eight
studies, which we excluded from further analysis (listed in Supplementary Table S4). Then,
we performed the independent differential gene expression analysis of each study and meta-
analysis for 24,365 genes evaluated in the different datasets, including every gene found in
at least two studies. We considered results with an FDR < 0.05, an absolute log2FC > 0.6,
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and those evaluated in at least eleven studies to be significant; overall, 1153 genes met these
criteria (Figure 3; further details are given in Supplementary Table S4).
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We noted the presence of genes encoding ECM components (e.g., collagens, fibronectin,
laminin, and stratifin), proteoglycans (e.g., versican), cell adhesion molecules, integrins,
matrix metallopeptidases, and additional peptidases and enzymes that impact mechano-
contractility, epithelial tension, and the stiffness of the tumoral stroma, which can promote
tumor progression and resistance to therapy (Figure 4). Table 1 displays the twenty genes
with the highest and lowest log2FC values from the meta-analysis; these genes mainly play
roles in ECM remodeling, desmoplasia, metabolism, and the immune system. Supplemen-
tary Table S4 reports a complete list of significantly affected genes.
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Figure 4. Overview of PDAC microenvironment. Meta-analysis results indicated an overexpression
of several ECM components, e.g., stratifin, fibronectin 1, different laminin subtypes (gamma2 and
beta3), collagens, and proteoglycans that characterize the dense and desmoplastic stroma of PDAC
tumors. Additionally, the results highlight the presence of immune components such as IFN27,
which contribute to an increase in the number of M2 macrophages and a decrease in the number of
CD8+ T cells. Therefore, the desmoplastic stroma and the immune system favor immune tolerance
and poor prognosis in PDAC. The red upward-pointing arrows denote genes exhibiting significant
overexpression in the conducted meta-analysis. IFN27: interferon alpha inducible protein; MMP1:
matrix metallopeptidase 1; NK cells: natural killer cells; T cells: T effector lymphocytes; Tregs: T
regulatory lymphocytes T.
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Table 1. Top twenty genes up- and down-regulated in PDAC patients.

Gene Symbol Gene Name Expression Level Function

CEACAM6 CEA cell adhesion molecule 6 UP EMR
SLC6A14 Solute carrier family 6 member 14 UP EMR

S100P S100 calcium-binding protein P UP EMR
CTSE Cathepsin E UP EMR

SULF1 Sulfatase 1 UP EMR
POSTN Periostin UP EMR

GJB2 Gap junction protein beta 2 UP EMR

GPRC5A G protein-coupled receptor class C group 5
member A UP EMR

SFN Stratifin UP EMR
FN1 Fibronectin 1 UP EMR

LAMC2 Laminin subunit gamma 2 UP EMR
CEACAM5 CEA cell adhesion molecule 5 UP EMR

MMP1 Matrix metallopeptidase 1 UP EMR
COL11A1 Collagen type XI alpha 1 chain UP EMR
TSPAN1 Tetraspanin 1 UP EMR

IFI27 Interferon alpha inducible Protein 27 UP IS
CST1 Cystatin SN UP EMT

LAMB3 Laminin subunit beta 3 UP EMR
COL10A1 Collagen type X alpha 1 chain UP EMR

VCAN Versican UP EMR
CTRB2 Chymotrypsinogen B2 DOWN EMR

PLA2G1B Phospholipase A2 group IB DOWN Metabolism
CTRC Chymotrypsin C DOWN EMR
GNMT Glycine N-methyltransferase DOWN Metabolism

AQP8 Aquaporin 8 DOWN H2O2
transport

SYCN Syncolin DOWN Exocytosis
CPA2 Carboxypeptidase A2 DOWN Metabolism

CELA2A Chymotrypsin-like elastase 2A DOWN EMR
GP2 Glycoprotein 2 DOWN Metabolism

KLK1 Kallikrein 1 DOWN Serine
protease

ALB Albumin DOWN Oncotic
pressure

CTRB1 Chymotrypsinogen B1 DOWN EMR

ERP27 Endoplasmic reticulum protein 27 DOWN
Lipid and

protein
synthesis

TMED6 Transmembrane p24 trafficking protein 6 DOWN Insulin
secretion

PNLIPRP1 Pancreatic lipase-related protein 1 DOWN Metabolism
CUZD1 CUB and zona pellucida-like domain 1 DOWN EMR and IS
CELA2B Chymotrypsin-like elastase 2B DOWN EMR

PNLIPRP2 Pancreatic lipase-related protein 2 DOWN Metabolism
CTRL Chymotrypsin-like DOWN EMR

SERPINI2 Serpin family I member 2 DOWN Protease
inhibitor

EMR = ECM remodeling; IS = immune system; EMT = epithelial–mesenchymal transition.

We performed ORA using GO biological process terms to identify the possible im-
plications of 1153 significantly differentially expressed genes in the PDAC samples. We
considered only those biological processes with at least ten associated genes and an ad-
justed p value under 0.05. We found 546 over-represented biological processes among
the over-expressed genes and 40 biological processes over-represented among the under-
expressed genes (Supplementary Table S5). ORA revealed the enrichment of terms related
to the tumor microenvironment (Figure 5), with GO terms related to the immune system,
cell adhesion, and ECM remodeling/degradation. Of note, additional over-represented
functions were related to metastasis (vascularization, cell migration, collagen, mesenchymal
transition, cell proliferation, and peptidyl modifications) [7,31].
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3.3. Interactive Tool for Results Visualization

The web tool contains comprehensive information regarding the data and results of
the meta-analysis of gene expression. The application includes tables and plots for the dif-
ferential expression results of twenty-one datasets included in the study and meta-analysis
results. Statistical indicators, such as the log odds ratio, confidence intervals, and adjusted
p values, are provided to estimate each study’s global expression and specific contribu-
tion. The web tool is available online: https://bioinfo.cipf.es/MetaPDAC/ (accessed on
1 January 2020).

3.4. Immune System: A Functional Overview in PDAC

To focus our analysis on the tumor immune microenvironment, we extracted a con-
sensus list of genes related to the immune system and inflammation from NCBI and GO
databases (mainly framed in the categories of HLA, interleukin, CD, interferon, chemokine,
and S100 genes, Supplementary Table S6). Considering an FDR threshold of 0.05 and
an absolute fold change greater than 0.6, we discovered the significant differential ex-
pression of 322 immune genes in our meta-analysis results. To explore the functional
involvement of these results, we performed ORA on this group of genes using GO biolog-
ical process terms and Reactome pathways. We considered significant functional terms
with at least ten associated genes and an adjusted p value < 0.05. We discovered the
over-representation of thirty-three GO terms and twenty-seven pathways among the over-
expressed immune-related genes and none when under-expressed genes were analyzed.
The enriched terms suggest the increased activity of neutrophil-related immune response,
the negative regulation of cell killing, interferon signaling, and an antigen presentation via
major histocompatibility complex II.

https://bioinfo.cipf.es/MetaPDAC/
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3.5. Immune and Stromal Survival Signatures Impact PDAC Prognosis

We explored the 322 differentially expressed immune-related genes and identified a set
of 70 genes of particular interest in our experimental research (Table 2). We performed sur-
vival analysis using the TCGA PAAD cohort for each of these genes and found statistically
significant differences in twenty-eight genes (IFI27, IL1R2, IL1RN, IL1RAP, IL18, IL22RA1,
HCP5, SLFN13, CD58, CD109, IFI44L, IFI16, IFITM1, IFIT1, IFIT3, IRF9, IFIT2, IFI35, CXCL10,
CXCL5, CXCL9, S100P, S100A6, S100A2, S100A16, S100A11, S100A14, and S100A10), which
shared a pattern: a higher expression in patients associated with a lower rate of survival.
As far as we are aware, this is the first time that HCP5, SLFN13, IRF9, IFIT2, and IFI35 have
been related to prognosis value in PDAC patients (Supplementary Figure S1).

Table 2. Subset of immune-related genes.

Functional Group Genes

HLA
HLA-F, HLA-DRB5, HLA-B, HLA-A, HCP5, HLA-DRA, HLA-DPA1,

HLA-DQB1, HLA-DQA1, HLA-DMB, HLA-DRB1, HLA-G, HLA-DPB1,
SLFN12, SLFN13, and SLFN11

Interleukin IL1R2, IL1RN, IL1RAP, IL7R, IL2RG, IRAK3, IL18, LIF, and IL22RA1

CD CD58, CD109, CD52, CD53, CD74, CD14, CCDC80, CCDC141, CCDC69,
DCDC2, and PDCD4

Interferon IFI27, IFI44L, IFI6, STING1, IFI16, IFITM1, ISG20, IFIT1, IFIT3,
IFITM2, IRF9, IFIT2, IFNGR2, IFITM3, and IFI35

Chemokine CCL20, CCL18, CXCL10, CXCL5, CXCL8, CXCR4, CKLF, CXCL9,
CXCL3, CXCL14, and CXCL12

S100 S100P, S100A6, S100A2, S100A16, S100A11, S100A4, S100A14,
and S100A10

Genes in bold possess statistically significant differences according to survival analysis.

We analyzed genes that displayed statistical significance as a “signature,” dividing
the samples into high-risk and low-risk groups based on the number of highly expressed
genes (above the upper quartile). We set the median (six highly expressed genes) as the
cutoff value to divide the samples into groups. Interestingly, patients in the high-risk group
possessed shorter survival times than those in the low-risk group did (p value < 0.0001,
Figure 6A). Furthermore, we studied the effect of this signature in a multivariate Cox model
including age, alcoholic history, the presence of chronic pancreatitis, diabetes diagnostic,
tumor grade, and the AJCC classification of a metastatic tumor and a residual tumor as
covariates. The proposed signature was the only variable with p value < 0.05 and showed
a hazard ratio of 2.36 (Supplementary Figure S2). We then analyzed the co-occurrence of
highly expressed genes in the samples, finding two main co-occurrence groups that related
to high-risk patients: i) the interferon gene family (IFN genes) and ii) the S100 and IL genes
(S100A14, S100A16, S100A6, S100A11, IL1R2, IL1RN, and S100P) (Figure 6B).

To explore how a desmoplastic environment can affect patients’ survival, we em-
ployed an homologous approach using genes related to ECM remodeling (Table 1). We
discovered eleven genes whose survival analysis showed statistically significant differences
(CEACAM5, CEACAM6, FN1, GJB2, GPRC5A, LAMB3, LAMC2, SFN, SLC6A14, TSPAN1,
and VCAN). Again, we divided the samples into high-risk and low-risk groups using
the median of the number of highly expressed genes as the cutoff value (median = 3).
Patients with high levels of expression in three or more genes from the signature presented
lower survival times than those with fewer highly expressed genes did (p value = 0.00012,
Figure 7A). Of note, we distinguished a cluster of co-occurrence of patients with high levels
of GJB2, FN1, and VCAN at the same time (Figure 7B).
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Figure 6. Survival analysis of immune system genes. A twenty-eight gene signature clustered patients
into high-risk or low-risk groups based on the number of highly expressed signature genes in their
transcriptomic profile. Patients with at least six highly expressed genes were classified as having a
high risk, whereas those with five or fewer were classified as having a low risk. (A) Kaplan–Meier
curve. Patients from the high-risk group (red) had shorter survival times than patients from the
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0, 25, 50, 75, and 100 months, and the censored events. (B) Heatmap demonstrating the patterns of
high expression between genes and samples. Gene expression was coded as 1 for a sample above the
upper quartile.
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into high-risk or low-risk groups based on the number of highly expressed signature genes in their
transcriptomic profile. Patients with at least three highly expressed genes were classified as having a
high risk, whereas those with five or fewer were classified as having a low risk. (A) Kaplan–Meier
curve. Patients from the high-risk group (red) had shorter survival times than patients from the
low-risk group did (blue). Below, the number of still alive patients and percentage in each group at
0, 25, 50, 75, and 100 months, and the censored events. (B) Heatmap demonstrating the patterns of
high expression between genes and samples. Gene expression was coded as 1 for a sample above the
upper quartile.

Finally, we performed comparative analysis between the immune and stromal survival
signatures identified in our work and other signatures generated in previous works for
patient stratification [9,10]. These results provided insight into the level of intersection
between this group of signatures (Supplementary Tables S7–S9).
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4. Discussion

Using comprehensive meta-analysis, we explored the immune environment and
desmoplastic stroma of PDAC tumors to contribute to a deeper understanding of tumorige-
nesis and the design of effective therapeutic strategies, such as immunotherapies. ECM
components from the desmoplastic stroma tightly interact with the immune environment
and contribute to immune evasion by modulating immune cell infiltration, thus influencing
cell proliferation, tumor progression, and overall survival [32,33]. The meta-analysis and
ORA results characterized differences in the gene-expression landscape of PDAC tumors
and identified more than 1000 dysregulated genes, most of them with immune system- and
desmoplasia-related roles. We discovered thirty-nine genes (twenty-eight immune-related
genes and eleven stroma-related genes) that impact PDAC patients’ survival.

Among the top forty dysregulated genes (Table 1), we observed the upregulation of
collagens (COL11A1 and COL10A1), which influence immune infiltration and chemoresis-
tance and confer a poor prognosis [34–36]. PDAC patients also presented with upregulated
periostin expression, which has been linked to a shorter overall survival [37], and cystatin
SN, which contributes to pancreatic cancer cell proliferation and may represent a potential
biomarker for the early detection of pancreatic cancer [38]. Stratifin and matrix metallopep-
tidase 1 also appeared to be upregulated in PDAC patients; stratifin stimulates matrix
metallopeptidase 1 expression in fibroblasts, contributing to remodel ECM [39]. The in-
creased expression of fibronectin in the PDAC stroma has also been reported. The observed
upregulation of cathepsin E and sulfatase 1 expression in the PDAC microenvironment might
also benefit the development of therapeutic strategies with polymer drug conjugates since
they may contribute to drug release [40–42].

The analysis of the top forty dysregulated genes also provided evidence for the
downregulation of genes coding for proteolytic enzymes released by the pancreas (e.g.,
chymotrypsin, chymotrypsinogen, lipases, and phospholipases). Pancreatic cancer cells express
around 20% of chymotrypsin C normal cells expression, with this enzyme participating in
cancer cell apoptosis and migration [43]. A recent report suggested that a combination of
trypsinogen and chymotrypsinogen displayed an anti-tumorigenic potential [44].

Focusing on the immune environment, PDAC tumors develop a wide range of mech-
anisms to evade the immune system (e.g., a low level of expression of HLA antigens,
immunosuppressive signals that inhibit natural killer and T cell functions, and the presence
of immunosuppressive cells). This creates an immunotolerant environment in which the
immune system of PDAC patients does not robustly recognize and target cancer cells [45].
We explored the expression of seventy genes of particular interest, including those from the
HLA, interleukin, CD, interferon, chemokine, and S100 categories. The survival analysis
of these genes in the TCGA PAAD cohort identified a twenty-eight immune-related gene
signature with a prognostic value that was used to cluster PDAC patients into high-risk
and low-risk groups.

The proposed signature possessed significance in univariate and multivariate Cox
models with clinicopathological variables, significantly adding statistical power to the sur-
vival analysis. This signature could aid in the stratification of patients (Figure 8) who could
benefit from immunotherapeutic strategies, given that it could contribute to distinguishing
“cold” PDAC tumors (characterized by the low presence of T cells (CD8+) and natural
killer cells, high presence of immunosuppressive cell populations, and poor prognoses
and responses to immunotherapy) from “hot tumors” (with an opposite profile) [46,47].
We uncovered two high gene-expression co-occurrence patterns, one composed of IFN
genes and the other of S100/IL genes. The IFN signaling pathways participate in PDAC
development, while the over-expression of S100 genes blocks the infiltration and cytotoxic
activity of CD8+ T cells, and the low level of expression of IL1RN and IL1R2 has been
associated with increase survival in PDAC patients [48–50].
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Figure 8. Patient stratification based on PDAC molecular features. Meta-analysis from transcriptomic
studies allows a better understanding of the PDAC environment. In this study, the found gene
signatures might contribute to the stratification of PDAC patients. In a first step, the immune or the
stroma gene signatures can divide patients into high- and low-risk populations. After, with a focus
on the immune signature co-occurrence, patients could be divided into those with more S100/IL
genes and those with a more IFN expressed genes. The knowledge about these molecular features of
PDAC tumors may guide the design of more effective therapeutic strategies.

To the best of our knowledge, this is the first report of data suggesting a link between
the HCP5, SLFN13, IRF9, IFIT2, and IFI35 immune genes and PDAC prognosis, presenting
the discriminatory power of clustering PDAC patients. The remaining genes of the immune
gene signature have been individually associated with PDAC or other cancers, with data
suggesting that their overexpression could impact patients’ diagnosis, prognosis, and
response to treatment [51–56]; however, we report that a joint gene expression signature of
these genes impacts PDAC patients’ survival.

Focusing on the PDAC stroma, the altered genes include several types of collagens,
fibronectins, and proteolytic enzymes, such as metalloproteases and peptidases (Table 1
and Supplementary Table S4), which significantly contribute to ECM composition and
stromal remodeling and support desmoplasia and immunosuppression [57]. The survival
analysis of significantly dysregulated stromal gene expression from the meta-analysis of
the TCGA PAAD cohort revealed a gene signature with prognostic capacity that clustered
PDAC patients into high-risk and low-risk groups. We observed a co-occurrence pattern in
high-risk patients, indicating a subgroup of PDAC patients with a high level of expression
of GJB2, FN1, and VCAN genes. These results indicate stromal heterogeneity in PDAC [58]
and the need to characterize it to stratify patients (Figure 8).

With respect to other dysregulated genes, the upregulation of CEACAM5 and CEA-
CAM6 represents an early event in pancreatic carcinogenesis, with these genes being
candidates for immunotherapies [59–61]. Furthermore, laminins LAMBC2 and LAMB3
support cancer progression and resistance to gemcitabine—one of the main chemothera-
peutics used in PDAC patients [62,63]. In general, the association of the stroma signature
with a poor prognosis is consistent with the one described in previous studies for each
gene: CEACAM5 [64], CEACAM6 [65], FN1 [66], GJB2 [67], GPRC5A [68], LAMB3 [69,70],
LAMC2 [69,70], SFN [71], SLC6A14 [72], TSPAN1 [73], and VCAN [66].

With respect to other similar approaches, we are aware of two additional studies in
which expression datasets were integrated to explore the nature of the PDAC in depth: one
by Gooneskere and colleagues, who integrated six PDAC and three other pancreatic carcino-
mas datasets [74], and one by Irigoyen and colleagues, who integrated two peripheral blood
datasets [75]. Both approaches integrate different datasets at the gene level to increase the
number of samples and perform unique DGE analysis. In contrast, our approach analyzed
each dataset independently, and then integrated the results, evaluating their robustness.
From the experimental design point of view, both studies differ greatly from ours, since
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Grooneskere et al.’s one is not specifically focused on PDAC, and Irigoyen et al.’s one does
not analyze pancreatic tissue. From a methodological point of view, our study contributes
to a more profound and robust analysis of the PDAC expression landscape by integrat-
ing data after DGE analysis had been performed, thus avoiding the necessity to control
heterogeneity among studies and retaining the full potential of biological differences.

Other molecular studies based on whole transcriptome and genomic analyses of
pancreatic tumors have found specific gene signatures that identify different molecular
subtypes [9,10]. However, the aim of this study was not to identify molecular subtypes,
such as in the cited works. The immune signature or the stromal signature presented in
this work establishes patient survival groups (high-risk group and low-risk group), which
could help practitioners to decide if the patient could benefit from immunotherapy, for
example, or not. Intersection analysis indicated that there is hardly any overlap between
the gene signatures found in our study and the signatures described by Bailey et al. [10]
or Moffitt et al. [9], as shown in the supplemental analysis (Supplementary Tables S7–S9).
Therefore, the proposed gene signatures show subtype-independent survival value and
display a reasonable number of genes for them to be translated to clinics. Nevertheless,
more and deeper studies are needed for this purpose. Additionally, the works by Moffitt
et al. and Bailey et al. are enormously rich and provide comprehensive molecular strat-
ification to facilitate personalized treatment and the identification of therapeutic targets.
Unfortunately, extensive molecular analyzes are difficult to translate to clinical practice for
individual patients.

A potential limitation of our study has been the relative heterogeneity among the sample
sizes and sequencing platforms used. The meta-analysis methodology, which integrates data
groups and provides results with higher statistical power and precision [76,77], addresses this
issue by independently comparing each study and combining the results. A lack of clinical
and/or molecular information in most studies, such as survival time, stage condition, or
molecular pattern, represents an additional limitation. We employed TCGA data for survival
analysis, but additional analyses should integrate other covariates of interest in the study.

Finally, we provided an interactive web tool that allows users to explore our results,
facilitating the accessibility, transparency, and reusability of our research. Overall, the web
tool provides a detailed and interactive visualization of the meta-analysis results, allowing
users to further explore and understand the gene expression patterns identified in the
studies. Other functionalities include the capability to customize and filter the data to
further investigate specific aspects of the analysis in more detail. In this manner, we aim to
align our research with the FAIR principles to share our data in a way that can be of further
use to the scientific community who studies this aggressive and lethal tumor.

5. Conclusions

Therapeutic strategies to overcome the immune microenvironment and the desmo-
plastic stroma barriers remain limited and generally unsuccessful. This study performs a
comprehensive transcriptional meta-analysis of the molecular PDAC environment. The
results highlight the relevance of the interaction between the immune system and stroma,
revealing an impact on patients’ survival. The identified gene signatures provide new
insights into the potential therapeutic targets for this deadly disease that can help to stratify
its heterogeneity. Future studies are needed to explore the benefits of targeting the immune
and stromal microenvironments as a treatment strategy for PDAC.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15112887/s1. Table S1: Software version. Table S2: Dataset
inclusion. Table S3: Clinical characteristics. Table S4: Gene meta-analysis results. Table S5: ORA
results. Table S6: NCBI and GO Immune system genes. Table S7: Gene signature comparisons. Table
S8: Moffit-Basal-like. Table S9. Moffit-Classical.
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